МИНИСТЕРСТВО ОБРАЗОВАНИЯ ИРКУТСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ НЕТИПОВОЕ УЧРЕЖДЕНИЕ дополнительного образования иркутской области «РЕГИОНАЛЬНЫЙ ЦЕНТР ВЫЯВЛЕНИЯ И ПОДДЕРЖКИ ОДАРЕННЫХ ДЕТЕЙ «ПЕРСЕЙ»

(ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР «ПЕРСЕЙ»)

УТВЕРЖДЕНО

Директор

А.А. Шестаков

приказ № ДО-у/162/2024 от «11» марта 2024 г.

Дополнительная общеразвивающая программа

«АВИАМОДЕЛИРОВАНИЕ И БЕСПИЛОТНЫЙ ТРАНСПОРТ»

Направленность: техническая

Категория учащихся: 10-17 лет

Объем: 72 часа

Форма обучения: очная

Разработчик программы: Изосимов Алексей Германович, тренер-преподаватель ЦТТ «СИГМА» г. Иркутска

1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ

- 1.1. Нормативно-правовые основания разработки программы Нормативную правовую основу разработки программы составляют:
- Федеральный закон от 29.12.2012 г. №273 «Об образовании в Российской Федерации»;
- Приказ Минпросвещения России № 196 от 09.11.2018 (ред. от 30.09.2020) «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеразвивающим программам».
- Приказ Минпросвещения России от 30.09.2020 N 533 "О внесении изменений в Порядок организации и осуществления образовательной деятельности по дополнительным общеразвивающим программам, утвержденный приказом Министерства просвещения Российской Федерации от 9 ноября 2018 г. N 196" (Зарегистрировано в Минюсте России 27.10.2020 N 60590).
- Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы). / Приложение к письму Министерства образования и науки Российской Федерации № 09-3242 от 18 ноября 2015 г.
- Федеральный государственный образовательный стандарт среднего общего образования (утв. <u>приказом</u> Министерства образования и науки РФ от 17 мая 2012 г. N 413). (С изменениями и дополнениями от: 29 декабря 2014 г., 31 декабря 2015 г., 29 июня 2017 г., 24 сентября, 11 декабря 2020 г.)
- Федеральный государственный образовательный стандарт основного общего образования (утв. приказом Министерства образования и науки РФ от 17 декабря 2010 г. N 1897) (С изменениями и дополнениями от: 29 декабря 2014 г., 31 декабря 2015 г., 11 декабря 2020 г.);
- Постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 г. № 28 «Об утверждении санитарных правил СП 2.4. 3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
 - Устав Образовательного центра «Персей»;
- Положение об организации и осуществлении образовательной деятельности по дополнительным общеразвивающим программам.
 - 1.2. Актуальность программы

Актуальность данной программы состоит в ранней профориентации на профессии, связанные с инженерным авиамоделированием и с управлением беспилотными аппаратами и FPV - дрон, а также направлен на расширение знаний по авиационной и авиамодельной технике, по основам аэродинамики и методике несложных технических расчетов. Основная задача теоретических занятий - расширить знания по физике полета, аэродинамике моделей и технике моделирования при постройке летающих моделей.

Отличительной особенностью программы является интеграция технической и физкультурно-спортивной направленности. Учащиеся получают технические знания и умения, включающие изучение устройства и принципов работы беспилотных летательных аппаратов (БПЛА), навыки сборки и ремонта устройств, в том числе 3д печать отдельных деталей, учатся управлять БПЛА, а также изучают правила и отрабатывают спортивные навыки по авиамодельному спорту в классе моделей F9U.

- 1.3. Направленность программы техническая.
- 1.4. Адресат программы:

К освоению программы допускаются учащиеся образовательных организаций в возрасте от 10 до 17 лет.

1.5. Цель, задачи и планируемые результаты освоения программы:

Целью изучения программы является:

– развитие интеллектуально-творческих способностей учащихся, их интереса к научно-исследовательской деятельности и техническому творчеству в области авиамоделирования, беспилотного транспорта и полет от первого лица.

Для решение поставленных целей необходимо решение воспитательных и образовательных задач:

- развитие у учащихся интереса к научно-исследовательской деятельности и техническому творчеству;
 - популяризация и пропаганда научных знаний;
- предоставление учащимся возможности испытать себя в решении исследовательских и прикладных научно-технических задач;
 - получение опыта командной проектной работы;
 - работа с прототипами изделий авиастроительной отрасли;
- обучение практическим навыкам работы с производственным и испытательным оборудованием;
 - тестирование прототипов изделий и систем на испытательном оборудовании.
 - формирование знаний в области баллистики и аэродинамики;
- обучение детей использованию в речи технической терминологии, технических понятий и сведений;
- формирование навыков работы с инструментами и приспособлениями при обработке различных материалов;
- формирование умения самостоятельно решать вопросы конструирования и изготовления моделей самолета и беспилотного транспорта, расчёте их полёта;

Планируемые результаты освоения:

Предметные результаты:

- знание основ авиамоделирования, основными понятиями и базовыми элементами моделирования;
- знание формообразование материаловедения, образное, пространственное мышление и умение выразить свою мысль с помощью чертежа, рисунка, авиамодели;
- навыки работы нужными инструментами и приспособлениями при обработке различных материалов;
- навыки учебно-исследовательской работы, создавать чертежи и шаблоны моделей;
 - знание правил техники безопасности при управлении БПЛА;
 - знание истории, сфер применения БПЛА;
- знание устройства БПЛА, основных элементов, материалов, из которых они изготавливаются;
 - знание основ аэродинамики;
 - владение навыками настройки БПЛА;
 - владение техниками управления БПЛА от «первого лица», в режиме FPV;
- знание правил «дрон-рейсинга» спорта в классе F9U, их практическое применение;
 - спортивные навыки, спортивная техника в авиамодельном спорте в классе F9U.

Метапредметные результаты:

- умение сотрудничать, выполняя различные роли в группе, в совместном решении проблемы (задачи);
- умения применять знания об окружающем мире из таких учебных предметов (окружающий мир, технология, литература и другие) для мотивации в работе по построению и разработке конструкции дронов;
- развивать мелкую моторику, пластичность, гибкость рук и точность глазомера;

- развить мотивацию к овладению техническими процессами изготовления моделей любой сложности;
 - реализовать технические и творческие способности воспитанников;
- развить самостоятельность, ответственность, активность, аккуратность,
 трудолюбие, умение работать в группе в процессе выполнения технической работы;
 - развивать потребность в саморазвитии;
- умение ориентироваться в своей системе знаний: отличать новое знание от известного;
 - умение работать по предложенным инструкциям и самостоятельно;
- умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
 - умение работать в команде, эффективно распределять обязанности.

Личностные результаты:

- понимание особой роли технического развития в жизни общества и каждого отдельного человека;
- эстетические чувства, техническо-творческого мышления, наблюдательности и фантазии, потребностей в творческом отношении к окружающему миру, в самостоятельной практической технической деятельности;
- навыки коллективной деятельности в процессе совместной технической работы в команде одноклассников под руководством педагога;
- умение обсуждать и анализировать собственную техническую деятельность и работу других учащихся с позиций задач данной темы, с точки зрения содержания и средств его выражения;
 - потребность в технической самореализации в социально- полезной деятельности;
 - патриотические чувства и качества;
 - навыки здорового образа жизни;
- устойчивый интерес к технике и технологиям, более развитые технические способности;
 - познавательная активность и способность к самообразованию;
- устойчивый интерес к профессиональной сфере применения БЛА, профессии оператора БЛА, профориентация на специальности, связанные с применением БЛА.

Воспитательные результаты:

- сформированная этика групповой работы, работы в команде, спортивная этика;
- умение установить отношения делового сотрудничества, взаимоуважение,
- ценностное отношение к своему здоровью;
- ответственное отношение к обучению, готовность к саморазвитию и самообразованию.

В результате освоения программы учащиеся должны

Знать.

- основные алгоритмические конструкции;
- принципы построения блок-схем;
- что такое БПЛА и их предназначение.

Уметь:

- составлять алгоритмы для решения прикладных задач;
- настраивать БПЛА;
- представлять свой проект.

Владеть:

- основной терминологией в области алгоритмизации и программирования;
- знаниями по устройству и применению беспилотников.

- 1.6. Объем и срок освоения программы. Программа рассчитана на 72 часа и предполагает овладение материалом в течении 14 дней. Данное количество часов определяется содержанием и прогнозируемыми результатами программы.
 - 1.7. Форма обучения очная.
- 1.8. Формы аттестации. Для определения результатов освоения программы у учащихся используются следующие виды контроля:
 - итоговая аттестация защита учебного проекта.
- 1.9. Режим занятий реализация программы проходит в течение 14 дней в рамках профильной смены. Занятия проводятся не более 6 часов в день с перерывом между занятиями 10 минут.
 - 1.10. Особенности организации образовательной деятельности

Практическая направленность программы осуществляется через игровые технологии, практикумы, экспериментальную работу и проектную деятельность с соблюдением требований техники безопасности.

1.11. Форма итоговой аттестации – защита учебного проекта.

2. УЧЕБНЫЙ ПЛАН

2.1. Учебный план по очной форме обучения

No॒	Наименование разделов, дисциплин	Iacob		циторная агрузка	Промежуто чная аттестация
3.12	(модулей)	всего часов	теоретиче ские	практич. занятия	форма
I	Раздел I. Научно-технический цикл	6	6		
1.1	Тема 1.1. Пилотажно-навигационные приборы и датчики	2	2		
1.2	Тема 1.2. Основы гидроавиации	2	2		
1.3	Тема 1.3. Математика в авиации	2	2		
II	Раздел И. Построение Дрона	20		20	
2.1	Тема 2.1. Монтаж Дрона	4		4	
2.2	Тема 2.2. Электрические цепи	4		4	
2.3	Тема 2.3. Принципиальные схемы Дрона	4		4	
2.4	Тема 2.4. Гироскопический датчик	2		2	
2.5	Тема 2.5. Акселерометр датчик	2		2	
2.6	Тема 2.6. Дополнительные датчики	2		2	
2.7	Инструмент для ремонта и построение БПЛА	2		2	
Ш	Раздел III. Аккумуляторы	7	2	5	
3.1	Тема 3.1. Разновидность и принцип аккумуляторов	3	1	2	
3.2.	Тема 3.2. Техника безопасности	4	1	3	
IV	Раздел IV. Аэродинамика	7	1	6	
4.1	Тема 4.1. Аэродинамика и конструкция летательных аппаратов	1	1		
4.2	Тема 4.2. Угол атаки лопастей дрона	2		2	
4.3	Тема 4.3. Аэродинамическая подушка дрона	3		3	

4.4	Тема 4.4. Центр тяжести летательных аппаратов	1		1	
V	Раздел V. Дрон-Рейсинг	20	2	18	
5.1	Тема 5.1. Основные компоненты FPV дрона	4	2	2	
5.2	Тема 5.2. FPV системы, разновидность	4		4	
5.3	Тема 5.3. FPV построение видео системы	4		4	
5.4	Тема 5.4. FPV монтаж видео системы	4		4	
5.5	Тема 5.5. FPV принципиальные схемы	4		4	
VI	Раздел VI. Итоговая аттестация	12			Защита проекта
6.1	Тема 6.1. Аттестация по сборке Дрона	2		2	
6.2	Тема 6.2. Аттестация теоретической части (вопросы)	2		2	
6.3	Тема 6.3. Аттестация «визуальный пролет»	2		2	
6.4	Тема 6.4. Аттестация в симуляторе	2		2	
6.5	Тема 6.5. Аттестация «пролет по очкам» (FPV)	2		2	
6.6	Тема 6.6. Аттестация «гонка на победителя»	2		2	
	Итого	72	11	71	

3. КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

3.1. Для реализации дополнительной общеразвивающей программы предусмотрена очная форма обучения.

32. Срок освоения ДОП составляет 14 дней, в том числе:

Обучение по разделам (дисциплинам).	
Подготовка к защите проекта	11 дн.
Итоговая аттестация	3 дн.
Итого	14 дн.

3.3. Календарные сроки реализации ДОП устанавливаются Образовательным центром «Персей» на основании плана-графика.

Nº	Наименование разделов, дисциплин, модулей и тем	Всего							Д	ни						
		72	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ι	Раздел I. Научно-технический цикл	6	4	2												
1.1	Тема 1.1. Пилотажно- навигационные приборы и датчики	2	2													
1.2	Тема 1.2. Основы гидроавиации	2	2													
1.3	Тема 1.3. Математика в авиации	2		2												
П	Раздел И. Построение Дрона	20		4	6	6	4									
2.1	Тема 2.1. Монтаж Дрона	4		4												

2.2	Тема 2.2. Электрические цепи	4			4											T
2.3	Тема 2.3. Принципиальные схемы Дрона	4			2	2							T			
2.4	Тема 2.4. Гироскопический датчик	2	1	+		2	1	t		+				-		$^{+}$
2.5	Тема 2.5. Акселерометр датчик	2	+	\dagger		2	+	+	+	+	+	+	+		-	+
2.6	Тема 2.6. Дополнительные датчики	71/05	+				2		+	+		+		-	+	$^{+}$
2.7	Инструмент для ремонта и построение БПЛА	2					2									
Ш	Раздел III. Аккумуляторы	7					2	5								
3.1	Тема 3.1. Разновидность и принцип аккумуляторов	3					2	1								
3.2.	Тема 3.2. Техника безопасности	4						4								Ť
IV	Раздел IV. Аэродинамика	7							6	1						
4.1	Тема 4.1. Аэродинамика и конструкция летательных аппаратов	1							1							
4.2	Тема 4.2. Угол атаки лопастей дрона	2							2							
4.3	Тема 4.3. Аэродинамическая подушка дрона	3							3							Ī
4.4	Тема 4.4. Центр тяжести летательных аппаратов	1								1						
V	Раздел V. Дрон-Рейсинг	20								5	6	5	4			İ
5.1	Тема 5.1. Основные компоненты FPV дрона	4								4						
5.2	Тема 5.2. FPV системы, разновидность	4								1	3					
5.3	Тема 5.3. FPV построение видео системы	4									3	1				
5.4	Тема 5.4. FPV монтаж видео системы	4										4				
5.5	Тема 5.5. FPV принципиальные схемы	4											4			
VI	Раздел VI. Итоговая аттестация	12												4	4	4
6.1	Тема 6.1. Аттестация по сборке Дрона	2												2		
6.2	Тема 6.2. Аттестация теоретической части (вопросы)	2												2		
6.3	Тема 6.3. Аттестация «визуальный пролет»	2													2	
6.4	Тема 6.4. Аттестация в симуляторе	2													2	
6.5	Тема 6.5. Аттестация «пролет по очкам» (FPV)	2														2
6.6	Тема 6.6. Аттестация «гонка на победителя»	2														2
	Итого	72	4	6	6	6	6	5	6	6	6	5	4	4	4	4

4. СОДЕРЖАНИЕ ДОПОЛНИТЕЛЬНОЙ ОБЩЕРАЗВИВАЮЩЕЙ ПРОГРАММЫ

Наименование, содержание раздела, дисциплины (практические, теоретические занятия)	Всего часов
Раздел I. Научно-технический цикл	2
Тема 1.1. Пилотажно-навигационные приборы и датчики	2
Теоретическое занятие 1.1. Пилотажно-навигационные приборы и датчики.	2
Тема 1.2. Основы гидроавиации	2
Теоретическое занятие 1.2. Основные понятия гидроавиации	2
Тема 1.3. Математика в авиации	2
Теоретическое занятие 1.3. Тригонометрические уравнения	2
Раздел II. Построение Дрона	20
Тема 2.1. Монтаж Дрона	4
Практическое занятие 2.1. Монтаж Дрона	4
Тема 2.2. Электрические цепи.	4
Практическое занятие 2.2. Электрические цепи.	4
Тема 2.3. Гироскопический датчик.	4
Практическое занятие 2.3. Гироскопический датчик.	4
Тема 2.4. Акселерометр датчик.	4
Практическое занятие 2.4. Решение задач по теме	4
Тема 2.5. Дополнительные датчики	4
Практическое занятие 2.5. Дополнительные датчики	4
Тема 2.6. Инструмент для ремонта и построение БПЛА	4
Практическое занятие 2.6. Инструмент для ремонта и построение БПЛА	4
Раздел III. Аккумуляторы	7
Тема 3.1. Разновидность и принцип аккумуляторов	3
Теоретическое занятие 3.1. Разновидность и принцип аккумуляторов	1
Практическое занятие 3.1. Разновидность и принцип аккумуляторов	2
Тема 3.2 Техника безопасности	4
Теоретическое занятие 3.2. Техника безопасности	1
Практическое занятие 3.2. Техника безопасности	3
Раздел IV. Аэродинамика	7
Тема 4.1. Аэродинамика и конструкция летательных аппаратов	1
Теоретическое занятие 4.1. Аэродинамика и конструкция летательных аппаратов.	1
Тема 4.2. Угол атаки лопастей дрона	2
Практическое занятие 4.2. Угол атаки лопастей дрона.	2
Тема 4.3. Аэродинамическая подушка дрона	3
Практическое занятие 4.3. Аэродинамическая подушка дрона	3
Тема 4.4. Центр тяжести летательных аппаратов	1
Практическое занятие 4.4. Центр тяжести летательных аппаратов	1
Раздел V. Дрон-Рейсинг	20
Тема 5.1. Основные компоненты FPV дрона.	4
Теоретическое занятие 5.1. Основные компоненты FPV дрона	2
Практическое занятие 5.1. Основные компоненты FPV дрона	2
Тема 5.2. FPV системы, разновидность	. 4
Практическое занятие 5.2.FPV системы, разновидность	4
Тема 5.3. FPV построение видео системы	4
Практическое занятие 5.3. FPV построение видео системы	4
Тема 5.4. FPV монтаж видео системы	4
Практическое занятие 5.4. FPV монтаж видео системы	4
ripunta teenee suintae e montum bagee energiabl	

Тема 5.5. FPV принципиальные схемы	4
Практическое занятие 5.5. FPV принципиальные схемы	4
Раздел VI. Итоговая аттестация	12
Тема 6.1. Аттестация по сборке Дрона	2
Практическое занятие 6.1. Аттестация по сборке Дрона	2
Тема 6.2. Аттестация теоретической части (вопросы)	2
Практическое занятие 6.2. Ответы на вопросы	2
Тема 6.3. Аттестация «визуальный пролет».	2
Практическое занятие 6.3. Аттестация «визуальный пролет»	2
Тема 6.4. Аттестация в симуляторе	2
Практическое занятие 6.4. Аттестация в симуляторе	2
Тема 6.5. Аттестация «пролет по очкам» (FPV)	2
Практическое занятие 6.5. Аттестация «пролет по очкам» (FPV)	2
Тема 6.6. Аттестация «гонка на победителя»	2
Практическое занятие 6.6. Аттестация «гонка на победителя».	2
Итого	72

5. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ

5.1. Материально-техническое обеспечение

Реализация программы на базе кампуса:

- корпус № 1, кабинет № 5;
- административный корпус, кабинет № 1;
- мебель, оборудование и расходные материалы (Приложение 1)
- 5.1. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники:

- 1. Аржаников Н. С. Аэродинамика: учебник / Н. С. Аржаников В. Н. Мальцев. 2-е изд. Москва: Оборонгиз, 1956. 484 с.: ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=256621 ISBN 978-5-4475-1633-8. Текст: электронный.
- 2. Белов, С. В. Аэродинамика и динамика полета : учебное пособие / С. В. Белов, А. В. Гордиенко, В. Д. Проскурин ; Оренбургский государственный университет. Оренбург: Оренбургский государственный университет, 2014. 110 с.: схем. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=364811 ISBN 978-5-7410-1200-0. Текст: электронный.
- 3. Введение в ракетно-космическую технику =: учебное пособие: в 2-х т.: [16+] / А. П. Аверьянов, Л. Г. Азаренко, Г. Г. Вокин [и др.]; под общ. ред. Г. Г. Вокина. 2-е изд. Москва; Вологда: Инфра-Инженерия, 2021. Том 1. Общие сведения. Космодромы. Наземные средства контроля и управления ракетами и космическими аппаратами. Ракеты. 380 с.: ил., табл., схем., граф. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=617272 Библиогр. в кн. ISBN 978-5-9729-0682-6. Текст =: электронный.
- 4. Методология научных исследований в авиа- и ракетостроении : учебное пособие / В. И. Круглов, А. С. Чумадин В. И. Ершов, В. В. Курицына. Москва: Логос, 2011. 432 с. (Новая университетская библиотека). Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=85026. ISBN 978-5-98704-571-8. –

Текст: электронный.

5. Фабрикант, Н. Я. Аэродинамика / Н. Я. Фабрикант. — Москва; Ленинград: Государственное издательство технико-теоретической литературы, 1949. — Часть 1. — 627 с. — Режим доступа: по подписке. —

URL: https://biblioclub.ru/index.php?page=book&id=230927 — ISBN 978-5-4458-7116-3. — Текст: электронный.

- 6. Фролов, В. А. Аэродинамические характеристики профиля и крыла: учебное пособие / В. А. Фролов. Москва: Директ-Медиа, 2013. 47 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=143041 ISBN 978-5-4458-2740-5. DOI 10.23681/143041. Текст: электронный.
- 7. Харитонов, А. М. Техника и методы аэрофизического эксперимента: учебник: [16+] / А. М. Харитонов; Новосибирский государственный технический университет. 2-е изд. Новосибирск: Новосибирский государственный технический университет, 2016. 643 с.: ил., табл., схем. (Учебники НГТУ). Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=576310 ISBN 978-5-7782-2873-3. Текст: электронный.
- 8. Шошина, К. В. Геоинформационные системы и дистанционное зондирование: учебное пособие / К. В. Шошина, Р. А. Алешко; Северный (Арктический) федеральный университет им. М. В. Ломоносова. Архангельск: Северный (Арктический) федеральный университет (САФУ), 2014. Часть 1. 76 с.: ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=312310 Библиогр. в кн. ISBN 978-5-261-00917-7. Текст: электронный.
- 9. Элементарный учебник физики: учебное пособие: в 3-х т. / ред. Г. С. Ландсберг. 14-е изд. Москва: Физматлит, 2010. Том 1. Механика. Теплота. Молекулярная физика. 612 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=82899 ISBN 978-5-9221-1256-7. Текст: электронный.
- 10. «Методические рекомендации по созданию и оснащению специализированных классов (кружков) на базе общеобразовательных организаций и центров практической подготовки на базе образовательных организаций, реализующих образовательные программы среднего профессионального образования, в целях реализации образовательных процессов в сфере разработки, производства и эксплуатации беспилотных авиационных систем» министерства просвещения РФ от 27.10.2023 года.

Дополнительные источники:

- 1. Авилов М. Модели ракет М.: ДОСААФ, 1968. 71 с.
- 2. Егоров В. Делай космос! М: Издательская группа «АСТ», 2018. 304 с.
- 3. Рожков В.С. Космодром на столе М.: Машиностроение, 1999. 144 с.
- 4. Феодосьев В.И. Основы техники ракетного полёта М.: Наука, 1979. -496 с.
- 5. Основы аэродинамики моделей ракет: учеб. пособие для объединений технического творчества учащихся / Полтавец Г. А., Крылова В. А., Никулин С. К.; М-во образования и науки Российской Федерации, Московский авиационный ин-т (гос. технический ун-т). Изд. 2-е, испр. и доп. Москва: Изд-во МАИ, 2005. 159
- 6. Ермаков А.М. Простейшие авиамодели: Кн. для учащихся 5 8 кл. сред. шк. /Под ред. Г.И. Житомирского. 2-е изд., перераб. М.: Просвещение, 1989.
 - 7. Изучаем Arduino. Джереми Блум. 2015 год.
- 8. Заворотов В.А. От идеи до модели: Кн. для учащихся 4-8 кл. сред. шк. 2-е изд., перераб. и доп. М.: Просвещение, 1988.
- 9. Материалы и компоненты радиоэлектроники. А. П. Казанцев. Учебное пособие. 2008 год.
- 10. Саймон Монк Программируем Arduino. Профессиональная работа со скетчами.
 - 11. Электроматериаловедение, Журавлева Л.В., 2013.
- 12. Электрорадиоматериалы: Учебник для техникумов. Калинин Н.Н., Скибинский Г.Л., Новиков П.П.: Высшая школа. 1981 г.

- 13. Чернявский, Г. М. Орбиты спутников связи / Г. М. Чернявский, В. А. Бартенев. М.: Изд-во «Связь», 1978. 152 с.
- 14. Радиолокация поверхности Земли из космоса. Исследование морской поверхности, ледяного и ледникового покровов с помощью спутниковой радиолокационной станции бокового обзора / под ред. Л. М. Митника, С. В. Викторова. Л.: Гидрометеоиздат, 1990. 200 с.
- 15. Савиных, В. П. Оптико-электронные системы дистанционного зондирования Земли / В. П. Савиных, В. А. Соломатин. М.: Недра, 1995. 240 с.
- 16. Шовенгердт, Р. А. Дистанционное зондирование. Модели и методы обработки изображений / Р. А. Шовенгердт. М.: Техносфера, 2010. 560 с.
- 17. Рис, У. Г. Основы дистанционного зондирования / У. Г. Рис. М.: Техносфера, 2006. 336 с.
- 18. Никитин Г.А., Баканов Е.А. Основы авиации: Учебник для вузов гражданской авиации. 2-е изд., перераб. и доп. М.: Транспорт, 1984. 261 с. 2.
- 19. Аэромеханика: Учеб. для студентов вузов / В.М. Гарбузов, А.Л. Ермаков, М.С. Кубланов, В.Г. Ципенко. М.: Транспорт, 2000. 287 с. 3.
- 20. Аэромеханика самолета: Динамика полета: Учебник для авиационных вузов / А.Ф. Бочкарев, В.В. Андреевский, В.М. Белоконов и др.; под ред. А.Ф. Бочкарева и В.В. Андреевского. 2-е изд. перераб. и доп. М.: Машиностроение, 1985. 360 с., ил. 4.
- 21. Аэродинамика летательных аппаратов: Учебник для вузов по специальности «Самолетостроение» / Г.А. Колесников, В.К. Марков, А.А. Михайлюк и др.; под ред. Г.А. Колесникова. М.: Машиностроение, 1993. 544 с.; ил.
- 22. Основы аэродинамики и гидромеханики. Медведев В.П., Демонова Т.В. 283 с.

Интернет-источники:

- 1. Google карты. Официальный сайт: :[Электронный ресурс] https://www.google.com/maps/@48.4038907,35.0435772,16z?hl=ru (Дата обращения: 14.02.2022 г.)
- 2. Государственная корпорация «Роскосмос». Официальный сайт: [Электронный ресурс]. М., URL: https://www.roscosmos.ru/ (Дата обращения: 14.02.2022 г.)

5.2. Кадровое обеспечение

Реализация программы обеспечивается педагогическими кадрами, имеющими, образование, соответствующее профилю/направлению программы.

5.3. Организация образовательного процесса

Каждый учащийся имеет рабочее место с доступом к сети Интернет (при необходимости), к современным профессиональным базам данных, информационным справочным и поисковым системам.

Программа обеспечивается учебно-методическим комплексом и материалами по всем дисциплинам, разделам.

Каждый обучающийся обеспечен не менее чем одним учебным печатным и/или электронным изданием по каждой дисциплине (включая электронные базы периодических изданий).

Внеаудиторная работа обучающихся сопровождается методическим обеспечением и обоснованием времени, затрачиваемого на ее выполнение.

Образовательная деятельность учащихся предусматривает следующие виды учебных занятий и учебных работ: лекции, практические занятия, и другие виды учебных занятий и учебных работ, определенные учебным планом.

6. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДОПОЛНИТЕЛЬНОЙ ОБЩЕРАЗВИВАЮЩЕЙ ПРОГРАММЫ

- 6.1. Освоение ДОП заканчивается итоговой аттестацией учащихся. Лица, успешно освоившие ДОП и прошедшие итоговую аттестацию, получают сертификат.
- 6.2. В соответствии с учебным планом итоговая аттестация по программе «Авиамоделирование и беспилотный транспорт» осуществляется в форме соревнований.
 - 6.3. Порядок проведения итоговой аттестации:

«Беспилотный транспорт» І этап «ВИЗУАЛЬНЫЙ ПРОЛЕТ»

Формой итоговой аттестации является участие в учебном проекте - соревнованиях по дрон-рейсингу

Квадрокоптеру необходимо выполнить последовательность действий:

- 1) Взлететь с точки старта.
- 2) Пролететь через обруч.
- 3) Облететь стойку против часовой стрелки.
- 4) Пролететь через арку.
- 5) Облететь стойку в обратном направление по часовой стрелки.
- 6) Пролететь через обруч. Вернуться в точку старта, приземлиться и заглушить двигатели.

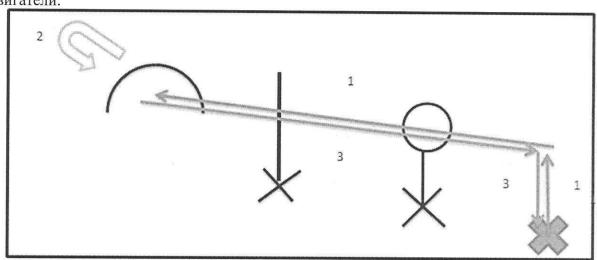


Таблица 1 – Критерии оценки

No	Наименование	Кол-во
		баллов
1	Пролет через обруч в прямом направлении	
	Пролет успешный, без касания обруча	1
	Пролет успешный, есть касание обруча	0.5
	Пролет не состоялся	0
2	Облет стойки против часовой стрелки	
	Облет успешный, без касания стойки	1
	Облет успешный, с касанием стойки	0.5
	Облет не состоялся либо ошибка в направлении облета	0
3	Пролет через арку в прямом направлении	

	Пролет успешный, без касания арки	1
	Пролет успешный, есть касание арки	0,5
	Пролет не состоялся	0
	Разворот	
4	Пролет через арку в обратном направлении	
	Пролет успешный, без касания арки	1
	Пролет успешный, есть касание арки	0,5
	Пролет не состоялся	0
5	Пролет через обруч в обратном направлении	
	Пролет успешный, без касания обруча	1
	Пролет успешный, есть касание обруча	0.5
	Пролет не состоялся	0
6	Посадка в пределах зоны взлета и посадки	
	Все ножки квадрокоптера находятся внутри зоны	1
	Хотя бы одна ножка квадрокоптера находится внутри зоны	0.5
	Все ножки квадрокоптера находятся вне зоны посадки	0
7	Время прохождения трассы в минутах	
	Лучшее время прохождения (1й результат) от 1 минуты до 2	10
	2й результат от 3 до 4 минут	7
	3й результат от 5 до 6 мин.	5
	4й результат от 7 до 10 мин.	1
	Максимально возможное количество баллов	16

«Беспилотный транспорт – FPV» II этап. «ПРОЛЕТ ПО ОЧКАМ» по трассе.

1. Футбольное поле

- 2. Трасса, по периметру, симетрично, четыре штук ворот, каждые установлены под 90 градусом относительно окружности трассы.
- 3. ЗАДАНИЕ на квалификационное время пролета всей трассы. В таблице приведено затраченное время на полет, выполняя фигуры «петля» потраченное время перевод в баллы.

ЗАДАНИЕ: Взлететь по команде со стартовой площадки. Пролететь первые ворота, переворот коптера по фигуре «ПЕТЛЯ» и снова влететь в эти же первые ворота и продолжить полет до вторых ворот, пролетели ворота «петля» и снова вхождение во вторые ворота и т.д. третий и четвертые препятствия и т.д. все четыре точки прохождения и четыре фигуры «петля». Круг является за конченым, если в отведенное время, были пройдены 4 препятствия ворот с фигурой «петля».

- 4. На каждого участника отводится **15 мину**т, если в течении этого времени трасса не была пройдена дисквалификация, **равна** = **0 баллов**.
- 5. Если пилот уронил коптер, и не может продолжит полет дальше дисквалификация, а это равняется **0 баллов**.
- 6. Время полета проведенное в таблице менее чем 15 минут, и «ЧИСТО» закончена трасса от старта до финиша, время засчитывается в квалификационный зачет.
 - 7. ТАБЛИЦА квалификационное время = баллы.

Таблица 1 - Критерии оценки

$N_{\overline{0}}$	Наименование	Кол-во
		баллов
1	Ворота - пролет = 1 пропустил = 0	1 = 0
	РОВНАЯ - ПЕТЛЯ.	10
	КРИВАЯ – ПЕТЛЯ	5
	Ворота	1 = 0
2	Ворота	1 = 0
	РОВНАЯ - ПЕТЛЯ.	10
	КРИВАЯ – ПЕТЛЯ	5
	Ворота	1 = 0
3	Ворота	1 = 0
	РОВНАЯ - ПЕТЛЯ.	10
	КРИВАЯ – ПЕТЛЯ	5
	Ворота	1 = 0
4	Ворота	1 = 0
	РОВНАЯ - ПЕТЛЯ.	10
	КРИВАЯ – ПЕТЛЯ	5
	Ворота	1 = 0
	Время затраченное на полет одно круга с препятствиями в баллах.	
	От 1 до 3 минут.	30 бал
	От 4 до 5 минут.	20 бал.
	От 6 до 7 минут.	10 баллов
	От 8 до 9 минут	5 баллов
	БОЛЕЕ 9 минут – полет дисквалифицируется	0 баллов

«Беспилотный транспорт – FPV» III этап. «ПРОЛЕТ ПО ОЧКАМ» по трассе командой или на зачетное время.

наименование	Время круга	баллы
3 круга трасса	От 3 минут до 4 мин.	30 баллов
3 круга трасса	От 5 до 6 мин	20 баллов
3 круга трасса	От 7 мин до 10 мин	10 баллов
Полет не пройден	Более 10 мин.	0 баллов
Трасса не пройдена	Коптер упал, без возможности продолжить полет	0 баллов

Мебель

- -Кресло для обучающихся Тип2 сетчатая ткань, крестовина металличес.хромированная
- -Кресло для обучающихся Тип2 сетчатая ткань, голубая, металлич. Хромированная
- -Кресло для обучающихся Тип3 сетчатая ткань черная, крестов. металличес.хромиров.
- -Стол учебный тип3(1400*600*750мм) метал.каркас-серый матовый, столешница.белая
- -Стул для обучающихся Тип 1, синий (532*550*815мм)
- Верстак ученика серый полуматовый (870x1600x700мм)
- Верстак преподавателя серый полуматовый (870х900х700мм)

Оборудование

- –Интерактивный комплекс Тип4 (монитор, системный блок, клавиатура, мышь, проектор, экран)
- -Монитор AOC 23.8" Value Line 24V2Q (00/01) черный IPS LED 5ms 16:9 HDMI матовая
- -Интерактивный флип-чарт (код товара УТ-00043141) (панель SAMSUHG+стойка)
- -Учебно лабораторный комплекс "Стол радиомонтажника"
- -Многофункциональный учебно-лабораторный комплекс наземных космических систем
- -Стенд проектирования источников питания для летательных аппаратов
- Квадролет (квадрокоптер)
- -Дрон гоночный
- -Тележка инструментальная серая полуматовая (вес 46 кг)
- -Верстак преподавателя серый полуматовый (870х1600х700мм)
- -Верстак ученика серый полуматовый (870х1600х700мм)
- -Корзина для утилизации отходов в учебных и административных аудиториях, черная
- -Комплект освещения W для верстака ученика
- -Набор инструментов REXANT 12-4784, 10 предметов
- -Длинногубцы Gigant180 мм
- -Комбинированные плоскогубцы 160 мм Top Tools 32D110
- -Клещи для зачистки проводов
- -Кримпер ЗУБР Эксперт 22668-23 + обжим наконечников
- -Нож в металлическом корпусе 18 мм Vira Auto-lock 831309
- -Набор отверток с магнитным наконечником 6 предметов
- -Набор напильников по металлу (3 шт.) Top Tools 06A430
- -Ножницы ТОРЕХ 17В714
- -Магнитный уровень InForce230vv 06-11-054
- -Цифровая паяльная станция, с термофеном в сборе LUKEY 702 5434
- -Цифровой мультиметр Mastech MAS830L 59718
- -Бокорезы Gigant 160 мм GDCP 160
- -Коммутационное оборудование тип 1 (Точка доступа MikroTik RBCAP2ND Wi-Fi белый)
- -Сейф тележка для зарядки ноутбуков
- -Ноутбук ученика (мышь проводная)

-Лаборатория ракетостроения в комплекте интерактивная панель на стойке

Расходные материалы

- –Припой ПОС 60
- -Флюс
- -Кислота паяльная
- –Припой
- -Губка для очистки жала паяльника